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solved spaces in the presence of non-Abelian bundles. We provide explicit examples in the
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sional models where the instantons are combined with Abelian gauge fluxes in order to

fulfil the local Bianchi identity constraint. We compare these models with the correspond-

ing C
2/Z3 orbifold models, and find that all of these gauge backgrounds can be related to

configurations of vacuum expectation values (VEV’s) of twisted and sometimes untwisted

states. Gauge groups and spectra are identical from both the orbifold and the smooth

bundle perspectives.
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1. Introduction

One of the central aims of string phenomenology is to construct models that are close

relatives of the Standard Model (SM) or of its supersymmetric extension (MSSM). There

have been many attempts in that direction, see e.g. [1 – 5], in this work we mainly focus on

heterotic orbifold and Calabi-Yau constructions.

Orbifold compactification of the heterotic string [6 – 8] has been one of the most suc-

cessful approaches to string phenomenology. One of its main advantages is that strings on

orbifolds define exact CFTs and are therefore fully calculable. Many MSSM-like models
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have been constructed [9 – 11] following the route of building six dimensional intermediate

“orbifold GUTs” [12] from string compactifications [13 – 15, 9, 16]. But this approach has

the severe limitation that away from the orbifold point in moduli space one quickly looses

control over the resulting effective theory. Moving away from the orbifold point is described

by giving vacuum expectation values (VEV’s) to some twisted states, which only makes

sense when these vevs are sufficiently small, hence one does not have access to the full

moduli space.

A generic point in the moduli space can only be described by giving the corresponding

Calabi-Yau with a stable gauge bundle that it can support. This brings us to the second

successful approach to obtain the MSSM from the heterotic string as a compactification

on elliptically fibered Calabi-Yau manifolds with stable bundles [17, 18] on them [19 – 23].

These two procedures are very different, hence it is very difficult to decide whether they

are closely related and give rise to the identical models. This might well be often the case

because orbifolds are typically considered as singular limits of smooth Calabi-Yau spaces.

It is this very interesting question, how these two approaches can be related to each other,

that provides part of the inspiration for our work.

In recent publications we have made first attempts to understand the relation between

heterotic string orbifold constructions and smooth Calabi-Yau manifolds with gauge bun-

dles (see [24] for earlier work). To this end we have constructed explicit blowups of C
n/Zn

orbifolds with Abelian gauge backgrounds satisfying the Hermitean Yang-Mills equations.

We have shown that their gauge group and massless spectra precisely correspond to het-

erotic models built on these orbifolds [25] (see also [26]). Building on these results, we

investigated the issue of multiple anomalous U(1)’s in blowup [27], and how these results

can be extended to the study of compact orbifold blowups [28]. However, generically it

is not easy to obtain explicit resolutions, but luckily techniques of toric geometry can be

employed to resolve many much more complicated orbifold singularities [29, 30] and can

even be lifted to describe the geometry of compact orbifold resolutions [31]. To be able

to also study the relation between heterotic strings on such generic orbifolds and their

toric resolutions, we constructed line bundles on them that characterize Abelian gauge

backgrounds [32]. For essentially all the heterotic orbifold models we considered, we were

able to find corresponding line bundle models, that have matching unbroken gauge groups

and spectra (some exceptions are heterotic orbifolds without first twisted states, where no

blow up is possible.) These analyses show that non-compact orbifold models with a single

twisted field taking a non-vanishing VEV along a supersymmetric, i.e. F- and D-flat di-

rection, that generates the blowup, can be matched with line bundle models with Abelian

structure groups built on their toric resolutions.

However, line bundles only define a very small subclass of possible stable bundles on

orbifold resolutions: There exist many other stable bundles that correspond to non-Abelian

gauge backgrounds. This is also clear from the heterotic orbifold model perspective: Only

a single of their twisted states takes a non-vanishing VEV to generate one of the line

bundle models on the resolution. Clearly, there are other F- and D-flat directions in which

multiple twisted and untwisted states take non-zero VEV’s simultaneously. Therefore, a

more complete understanding of the relation between orbifold models with VEV’s switched
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on and non-Abelian bundle models is required.

In this work we take a first step in this direction by studying this issue for compactifi-

cations on non-compact K3 spaces preserving six dimensional N = 1 supersymmetry. We

consider Eguchi-Hanson resolutions [33 – 35] of the non-compact orbifolds C
2/Zn, because,

not only are these spaces known explicitly, but also a basis of all Abelian gauge con-

figurations have been built on them. In addition even a large class of non-Abelian gauge

backgrounds have been constructed in the past [36, 37]. After we have reviewed the explicit

constructions and discussed how these results can be described using a language inspired

by toric geometry, we systematically classify all the possible resolutions with Abelian and

non-Abelian backgrounds combined embedded in SO(32), that fulfill the local integrated

Bianchi identity. (We focus here mainly for simplicity only on the ten dimensional N = 1

SO(32) heterotic supergravity, the E8×E8 can be treated similarly.) For each of these bun-

dle models we are able to give the corresponding configuration of VEV’s of twisted and

untwisted states the heterotic SO(32) theory, that result in the same gauge group and six

dimensional chiral spectrum. In this sense the present paper can be seen as the extension

of the work [24] where this matching was established for line bundles only. For concreteness

we perform most of this study for the resolution of the orbifold C
2/Z3; we are confident

that our results can be generalized to other C
2/Zn blowups as well.

2. Eguchi-Hanson C2/ZN resolutions

In this section we give an explicit description of the resolution of C
2/ZN singularities using

Eguchi-Hanson spaces. After describing the geometry we first consider Abelian gauge

backgrounds on these spaces, and then we turn to non-Abelian configurations realized as

instantons. This subsection has been based to a large extend on [37] (see also [38]).

2.1 Geometry

The starting point of the description of Eguchi-Hanson spaces [33, 39, 35] in four Euclidean

dimensions is the line element

ds2 = V −1
(
dx4 + ~ω · d~x

)2
+ V d~x2 , (2.1)

or equivalently the vielbein one-forms:

~e = V
1

2 d~x , e4 = V - 1

2

(
dx4 + ~ω · d~x

)
. (2.2)

Here we use the three dimensional vector notation ~xT = (x1, x2, x3) ∈ R
3, and make use

of the standard vector inner and outer products. Instead, x4 has compact range, that

will be determined below. V and ~ω are scalar and vector functions of ~x only; we denote

derivative w.r.t. xi, i = 1, 2, 3 as V,i, etc. The spin-connection one-form is defined via the

Maurer-Cartan structure equations

d eA + ΩAB eB = 0 , ΩAB = − ΩBA , (2.3)
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where A = 1, 2, 3, 4. A short computation shows that the independent components read:

Ω4i =
1

2
V - 3

2

{

− V,i e4 − (ωi,j − ωj,i)ej

}

,

Ωij =
1

2
V - 3

2

{

V,jei − V,iej + (ωi,j − ωj,i)e4

}

.

(2.4)

The curvature two-form in turn is obtained via the conventional expression

RAB = dΩAB + ΩACΩCB , (2.5)

The defining property of an Eguchi-Hanson space is that it has a self-dual curvature two-

form

RAB = − 1

2
ǫABCD RCD = ∗RAB . (2.6)

Here ǫABCD denotes the four dimensional epsilon tensor, with ǫ1234 = 1. The Hodge

∗-operation acts as

∗(eAeB) = − 1

2
ǫABCD eCeD , ∗2 = 11 , (2.7)

i.e. ∗(e4 ei) = 1
2 ǫijk ej ek, given the relation ǫijk = ǫijk4 between the three and the four

dimensional epsilon tensor.

A self-dual curvature is obtained automatically if the spin-connection one-form itself

is self-dual, this is guaranteed if

V,i = − ǫijk ωj,k ⇒ V,ii = 0 . (2.8)

This means that V is an harmonic function of ~x. The precise expression for this harmonic

function distinguishes between Eguchi-Hanson spaces and Kaluza-Klein monopoles: For

the former the harmonic function takes the form

V (~x) =
N∑

r=1

R/2

|~x− ~xr|
, (2.9)

where the points ~xr denote the N centers of the Eguchi-Hanson space, and R sets the scale

of the geometry. (Kaluza-Klein monopoles have a similar expansion but with an additional

non-vanishing constant added.)

At the centers the function V has singularities, but this does not necessarily imply

that the geometry is singular. To see this we zoom in on one of the centers, which can be

assumed to be located at the origin, so that we can ignore the other centers, i.e. V → R/(2̺)

with ̺ = |~x|. Using spherical coordinates,

x1 = ρ sin θ sin φ , x2 = ρ sin θ cos φ , x3 = ρ cos θ , (2.10)

the line element for a single center can be written as

ds2
∣
∣
∣
single

= V −1

(

dx4 +
1

2
R(cos θ − 1)dφ

)2

+ V
(
d̺2 + ̺2 dθ2 + ̺2 sin2 θ dφ2

)
, (2.11)

– 4 –



J
H
E
P
1
1
(
2
0
0
8
)
0
4
4

which means that we have chosen a gauge in which

~ωT =
R

2̺

1

̺+ x3

(

x2,−x1, 0
)

. (2.12)

By introducing the complex coordinates

z1 =
√

2R̺
1

2 cos

(
1

2
θ

)

eix4/R , z2 =
√

2R̺
1

2 sin

(
1

2
θ

)

ei(φ−x4/R) , (2.13)

one sees that the Eguchi-Hanson space with a single center is flat

ds2
∣
∣
∣
single

=
∣
∣dz1

∣
∣2 +

∣
∣dz2

∣
∣2 , (2.14)

everywhere except possibly at the origin. In order that the space is flat there as well, no

deficit angle should be present, this implies that

x4 ∼ x4 + 2π R (2.15)

is periodic with a period of 2π R. Therefore, if we want that the Eguchi-Hanson space has

no singularities, all centers have the same radius R, as given in (2.9).

If n of the N center of an Eguchi-Hanson space come close together a Zn orbifold

singularity arises. This can be easily seen by reviewing the above argument when n centers

are on top of each other: Indeed, the metric for this case is obtained by replacing R by nR.

Therefore, this substitution can be made in all of the consequent results, in particular the

complex coordinates now become

z1 =
√

2nR̺
1

2 cos

(
1

2
θ

)

eix4/(nR) , z2 =
√

2nR̺
1

2 sin

(
1

2
θ

)

ei(φ−x4/(nR)) , (2.16)

except in the periodicity (2.15) of x4. Now, since the Eguchi-Hanson space is non-singular

when all centers are away from each other, and this fixes (2.15), when n centers are on top

of each other the periodicity of x4 leads to the following C
2/Zn orbifold identification

(
z1, z2

)
→

(
z′1, z

′
2

)
=
(
e2πi/nz1, e

-2πi/nz2
)
. (2.17)

The complex structure that we have introduced above for the Eguchi-Hanson space,

with one or multiple centers on top of each other, is not unique. In fact any Eguchi-Hanson

space can be equipped with three complex structures, or a hyper-Kähler structure. The

three Kähler forms,

Ji =
1√
2

(

e4 ei −
1

2
ǫijk ej ek

)

=
1√
2

(
1 − ∗

)
e4 ei , (2.18)

of the hyper-Kähler structure are anti-self-dual, and define a Clifford algebra

∗Ji = − Ji ,
{
Ji, Jj

}
= 2δij Vol , (2.19)

where Vol = e1e2e3e4 is the volume form of the Eguchi-Hanson space.
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2.2 Abelian gauge backgrounds

An important aspect is that an Eguchi-Hanson space supports regular Abelian gauge fluxes

Fr = dAr, taken to be anti-Hermitean, that satisfy the Hermitean-Yang-Mills equations

Fr Ji = 0 , (2.20)

for i = 1, 2, 3 on a hyper-Kähler manifold. As becomes clear below, these field strengths

are labeled by r, the center of the Eguchi-Hanson space. Because Ji are anti-self-dual,

these conditions are identically satisfied if Fr are self-dual, i.e. can be written as

Fr = i Fr i

(

e4 ei +
1

2
ǫijkej ek

)

, (2.21)

for real functions Fr i of ~x. The closure of the field strength of an Abelian gauge field,

dFr = 0, implies that Fr i = Fr,i for some scalar functions Fr. The other components of

the closure relations require these functions fulfill the equation
[
V Fr

]

,ii
= V Fr,ii + 2V,i Fr,i = 0 . (2.22)

The first equality is obtained by using that V is harmonic. Hence we conclude that V Fr
is harmonic as well, and hence can be expanded in terms of harmonic functions 1/|~x − ~y|
with constant ~y, hence we have Fr(~x) = 1/(V (~x) |~x− ~y|). This means that unless ~y equals

one of the positions of the centers of the Eguchi-Hanson space, the gauge background is

singular. Therefore, we associate to each center ~xr a gauge background

Fr =
i

R

(
Vr
V

)

,i

(

e4 ei +
1

2
ǫijkej ek

)

, with Vr(~x) =
R/2

|~x− ~xr|
. (2.23)

This field strength is obtained from the gauge connection given by

Ar = − i

R
V − 1

2

[
Vr e4 − ~ωr · ~e

]
, (2.24)

where ~ωr is defined from Vr via the equation (2.8). The normalization of the gauge con-

nections Ar above has been chosen such that the corresponding gauge field strengths Fr
define an orthonormal basis of self-dual two forms [40, 41]

∫ FrFs
(2π)2

= − δrs , (2.25)

where the integral is performed over the whole Eguchi-Hanson space.

Because V =
∑

r Vr, it follows that
∑

r Fr = 0, i.e. only N − 1 of these N gauge

backgrounds are independent. A basis of the independent gauge backgrounds can be defined

by

F̃r = Fr+1 − Fr , (2.26)

for r = 1, . . . , N − 1. It follows immediately from (2.25), that the inner products of these

two-forms Fr gives rise to the Cartan matrix G of the AN -1 algebra of SU(N):

∫ F̃rF̃s
(2π)2

= −Grs . (2.27)
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Therefore the embedding of the Abelian gauge background in the gauge group SO(32) of

the heterotic theory, is encoded by

A(ρ) = ρT Ã , ρr = ρI rHI , (2.28)

where ρT = (ρ1, . . . , ρN−1) is an Cartan algebra valued vector withHI the generators of the

Cartan subalgebra. We often also view ρ as collection of N − 1 vector ρr with components

ρIr .

2.3 Non-Abelian gauge backgrounds

Eguchi-Hanson spaces also support non-Abelian gauge backgrounds. The tangent bundle

obviously defines an example of a non-Abelian gauge background on this space. In this

section we would like to review how a large class of non-Abelian fluxes, or instantons,

can be constructed explicitly. Such instantons are generalizations [37] of the ’t Hooft

instantons [42] on R
4. We first consider SU(2) gauge background and then at the end of

this subsection comment how to construct gauge backgrounds with other structure groups.

Consider a gauge connection one-form

A = i V − 1

2

[
A4 e4 + ~A · ~e

]
, (2.29)

which takes values in the SU(2) algebra generated by the Pauli-matrices σi. In order that

the corresponding non-Abelian gauge field strength F = dA+A2 satisfies the Hermitean-

Yang-Mills equations (2.20), it has to be self-dual as the Abelian gauge backgrounds dis-

cussed in the previous subsection. This implies that the matrix-valued one-forms A4 and
~A satisfy

−A4,i + i[A4, Ai] = ǫijk

(

−Aj,k +
i

2
[Aj, Ak]

)

. (2.30)

To solve this equation we make the ansatz for the potential one-forms

A4 = Pi σi , Ai = − ǫijk Pj σk , (2.31)

where Pi are scalar functions to be determined. Substituting this ansatz into the equation

above, leads to two independent relations

Pi,j − Pj,i = 0 , Pi,i − 2(Pi)
2 = 0 . (2.32)

The first identity implies that Pi = P,i of a single scalar function P ; the second equation

implies that this can be expressed as

P (~x) = − 1

2
lnH(~x) , (2.33)

where H is again an harmonic function. The centers of this harmonic function have to

coincide with some of the centers of the Eguchi-Hanson space, otherwise the background is

a configuration that does not have finite action, i.e. is singular. We will often say that the
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harmonic function H and therefore the corresponding instanton are supported at some of

the centers of the Eguchi-Hanson space. To summarize, the gauge background becomes

A = − i V − 1

2

{
H,k

H
e4 + ǫijk

H,i

H
ej

}
1

2
σk = − V − 1

2

H,A

H
eB

1

2
γ+
AB , (2.34)

where after the second equal sign we have used the four component spinor notation of

SO(4) to emphasize that the non-Abelian bundle only affects the positive chirality sector.

(For our conventions concerning spinor representation properties see appendix B.) Its field

strength reads

F =
i

2
V −1

{(
H,ij

H
− 2

H,i

H

H,j

H
− V,i

V

H,j

H

)

σj +
H,m

2

H2
σi

}(

e4ei +
1

2
ǫikl ekel

)

.

(2.35)

As a first important example of a non-Abelian gauge background, we consider the

standard embedding in which the gauge connection is determined by the spin-connection

ASE =

(

Ω4k +
1

2
Ωij ǫijk

)
i

2
σk . (2.36)

By comparing the expressions for Ω4i and Ωij given in (2.4) and the generic non-Abelian

gauge background (2.34), we infer that for the standard embedding we have H(~x) = V (~x).

Therefore the standard embedding is a non-Abelian gauge background that has support at

all centers of the underlying Eguchi-Hanson space. Other non-Abelian gauge backgrounds

are not supported at all Eguchi-Hanson centers.

The non-Abelian gauge backgrounds above are classified by their instanton numbers

∫

c2(F) =

∫
1

2
tr

( F
2πi

)2

, (2.37)

obtained as integrals over the second Chern class, for this see e.g. [43] (moreover, c1(F) =

0). The instanton number is related to the number p of Eguchi-Hanson centers where a

non-Abelian gauge flux has support. To determine this relation, we make the following

observations: Away from the centers, the gauge configuration is pure gauge, hence the

field strength vanishes there. Therefore, the only contributions to the instanton number

come from the centers of the non-Abelian background and the asymptotic for ~x→ ∞. To

compute the contribution from the centers, we consider a small ball B~xI
surrounding the

center ~xI , and we use Stoke’s theorem
∫

B~xI

c2(F) =

∫

∂B~xI

ωCS(A) =
1

8π2

∫

∂B~xI

1

3
trA3 = 1 . (2.38)

Here we used that only the second term of the Chern-Simons three-form ωCS(A) =

−tr(FA − 1
3A3)/(8π2) does not vanish. This computation holds for each center sepa-

rately, when all centers are at finite distance from each other. Because this is a topological

quantity even in the limit when p centers come close together, each of them still has an in-

stanton number 1, hence collectively they have instanton number p. The instanton number

– 8 –
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at infinity can be computed in a similar way, but now only the leading contributions have

to be taken into account. For an Eguchi-Hanson space with an instanton that is supported

at p of its N centers this means that

V (~x) =
NR

2|~x| , H(~x) =
pR

2|~x| , (2.39)

for large |~x|. Since H only appears in a logarithm, that determines the non-Abelian gauge

connection, the pre-factor in H is in fact irrelevant. Hence, the integral over the region

X̺ = {~x, |~x| > ̺} gives, using Stoke’s,

∫

Xr

c2(F) = − 1

N
, (2.40)

when ̺ → ∞ because the orientation is opposite w.r.t. that around the centers of the

instanton. Collecting the various contributions we conclude that the instanton number of

an instanton with support at p of its N centers of a Eguchi-Hanson space is given by

∫

c2(F) = p − 1

N
. (2.41)

The instantons discussed so far only define SU(2) gauge configurations, instantons in

other gauge representations can be easily obtained from these. A complete and general

investigation of instantons on Eguchi-Hanson spaces involves a combined ADHM [44, 45]

and Kronheimer-Nakajima [46 – 48] construction, for a comprehensive review see e.g. [37,

49]. We make use of an easier but less general approach [50] (reviewed in [51]) in which the

spin-1
2 generators 1

2σi of SU(2) are replaced by generators Ti in a generic representation

of SU(2) in the expressions for the gauge background (2.34). In particular the instanton

number (2.37) in that representation is obtained by replacing tr
(

1
2σi

1
2σj
)

by tr
(
TiTj). An

irreducible representation Rj is labeled by the spin quantum number j = 0, 1
2 , 1,

3
2 , etc.;

its dimension and quadratic Casimir are given by dimRj = 2j + 1 and Cj = j(j + 1)

respectively. Therefore, the instant number of representation Rj is

kj =
2

3
Cj dimRj =

2

3
j(j + 1)(2j + 1) (2.42)

times larger than that in the fundamental spin-1
2 representation. If we embed a spin-j

representation in SU(M) with M ≥ 2J + 1, a SU(2j+1) subgroup is filled up, hence the

subgroup SU(M -2j-1) remains unbroken.

For the embedding of instanton configurations in SO(32) groups, which is of main

interest in this paper on heterotic SO(32) blowup models, it is important to realize that

SO(4) = SU(2)+ × SU(2)− on the level of the algebra, where the ± on the SU(2)s refer to

the chiralities of the spinor representations. Explicit representations of the SU(2)± are γ±AB
defined in appendix B. Hence using the spin-1

2 configuration we the symmetry breaking

pattern reads

SO(32) → SO(28) × SU(2)+ × SU(2)− → SO(28) × SU(2)− , (2.43)
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because the gauge background has positive chirality, see (2.34). When we consider the

embedding of a second identical spin-1
2 instanton, the chirality forces us to embed it in

the SO(28). The surviving gauge group in this case is SO(24) × Sp(4)−. The explicit

representation of the generators of this symplectic group is given in appendix B. Similarly,

when we have a triple or quadruple embedding of identical instantons, we obtain the left-

over symmetry groups SO(20) × Sp(6)− and SO(16) × Sp(8)−, respectively. Finally, it is

possible to use the spin-1 embedding into SO(32), because this representation is a vector

representation, it induces the symmetry breaking to SO(29).

3. Toric C2/ZN resolutions

We review the resolution Res(C2/ZN ) described using toric geometrical terms, and give

a systematic account of gauge fluxes on such resolutions. This section is based in part

on [31, 32]. (For a more detailed account on toric geometry, see e.g. [52 – 54].)

3.1 Geometry

Let z1, z2 denote the coordinates of C
2 associated with those of the orbifold C

2/ZN before

the blowup, and x1, . . . xr, r = 1, . . . N − 1 the additional homogeneous coordinates that

define the toric variety

Res(C2/ZN ) =

(

C
N+1 − {0}

)/

(C∗)N−1 . (3.1)

The extra homogeneous coordinates xr are associated with the twisted sectors wr = (r,N−
r)/N of a C

2/ZN orbifold theory. The local coordinates constructed from the homogeneous

ones

Z1 = z1

N−1∏

r=1

x(N−r)/N
r , Z2 = z2

N−1∏

r=1

xr/Nr , (3.2)

are invariant under the complex scalings:
(
z1, x1, x2

)
∼
(
λ1 z1, λ

−2
1 x1, λ1 x2

)
,

...
(
xN−2, xN−1, z2

)
∼
(
λN−1 xN−2, λ

−2
N−1 xN−1, λN−1 z2

)
,

(3.3)

where λ1, . . . , λN−1 ∈ C
∗.

The ordinary and exceptional divisors are defined as Di = {zi = 0}, i = 1, 2, and

Er = {xr = 0}, r = 1, . . . , N − 1, respectively. The exceptional divisors are compact, while

the ordinary ones are not. From the fan of the toric diagram we read off the intersections

ErEr+1 = 1 , (3.4)

for r = 0, . . . N , when we write E0 = D2 and EN = D1. The self-intersections of the

exceptional divisors equal

E2
r = − 2 , (3.5)
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with r = 1, . . . , N − 1. The intersections of the exceptional divisors can be conveniently

grouped together as:

EET = −G . (3.6)

where G = G(AN−1) is the Cartan matrix of SU(N) and ET = (E1, . . . , EN−1). The

ordinary divisors are not independent from the exceptional ones because of the following

linear equivalence relations

D1 ∼ −
N−1∑

r=1

r

N
Er , D2 ∼ −

N−1∑

r=1

N − r

N
Er . (3.7)

These relations are compatible with the (self-)intersections given above, and can be

used to show that the Euler number of the resolution is given by

χ(Res(C2/ZN )) =

∫

c2(Res(C2/ZN )) = N − 1

N
. (3.8)

To obtain this one may expand to second order the total Chern class represented as a

product over all divisors

c(Res(C2/ZN )) = (1 +D1)(1 +D2)

N−1∏

r=1

(1 + Er) , (3.9)

and use the intersection numbers are described above. If one expands the total Chern class

to first order and uses the linear equivalence relations (3.7), one finds zero. This shows that

the space has vanishing first Chern class, i.e. a non-compact four dimensional Calabi-Yau.

3.2 Abelian gauge fluxes

Next we turn to describe Abelian gauge configurations on the resolution of the C
2/ZN

singularity. As an Abelian gauge flux F can be expanded in terms of the exceptional

divisors, we may write

F
2π

= ρTE = ρ1E1 + . . .+ ρN−1EN−1 , (3.10)

for some coefficients ρr inside the vector ρT =
(
ρ1, . . . , ρN−1

)
. These coefficients have to

be chosen such that the gauge flux is properly quantized. This means that the entries of

the vector

Q = −
∫

E
F
2π

= Gρ , (3.11)

are all “charges”, i.e. elements Qr ∈ Λ, of the lattice spanned by vectorial and spino-

rial weights of SO(32). Any choice of the charges constitutes a valid gauge background
F
2π = QT G−1 E , resulting in a contribution to the Bianchi identity

−1

2

∫ ( F
2π

)2

=
1

2
ρT Gρ =

1

2
QT G−1 Q . (3.12)
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On the resolution, the orbifold gauge shift vector v can be computed as the flux around

one of the coordinate axes, i.e. integrals over the divisors Di. This identification has to

hold only up to vectors out of the lattice Λ, denoted by “≡”. Because the orientation of

the orbifold action on the coordinates z1 and z2 is opposite, we have

−v ≡
∫

D2

F
2π

= ρ1 =
1

N

N−1∑

r=1

r Qp -r ,

v ≡
∫

D1

F
2π

= ρN -1 =
1

N

N−1∑

r=1

(N − r)Qp -r . (3.13)

Either of these equations tells us that v is properly quantized in units of 1/N , and that

they are compatible because

ρ1 + ρN−1 =
N−1∑

r=1

Qr ∈ Λ (3.14)

equals a lattice vector in any case. Therefore any choice of charges Q defines a consistent

gauge background that can be identified with orbifold boundary conditions in the blow

down limit.

To find the properly quantized ρ is not so straightforward in general. Since in the

latter part of this paper we focus on models on the resolution of C
2/Z3 we remind the

reader of the properly quantized bases found previously [32]

FV
2π

= (V I
1 D1 + V I

2 D2)HI , (3.15)

where V1 and V2 are vectorial or spinoral lattice vectors. Upon converting the D’s to the

E’s and using the linear equivalence relations, we see that this means that

ρ1 = − 1

3

(
V1 + 2V2

)
, ρ2 = − 1

3

(
2V1 + V2

)
. (3.16)

The contribution to the Bianchi identity then reads

−1

2

∫

tr

(FV
2π

)2

=
1

3

(
V 2

1 + V 2
2 + V1 · V2

)
. (3.17)

3.3 Relation with explicit construction of (non-)Abelian gauge fluxes

In the previous section we have discussed explicit solutions of the non-compact Calabi-Yau

condition and presented explicit constructions of Abelian and non-Abelian gauge back-

grounds. Comparing the results of the Abelian gauge fluxes and the construction of the

divisors shows, that we can make identifications between the exceptional and ordinary di-

visors and the characteristic classes corresponding to the gauge field strength (denoted by

[. . .])

2π Er = [F̃r] = [Fr − Fr+1] , 2π D1 = [FN ] . 2πD2 = − [F1] . (3.18)
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D2
D1E2E1

~x2~x1 ~x3

Figure 1: Schematic picture of the compact and non-compact curves within the resolution of

C2/Z3 corresponding to the exceptional divisors Er and the ordinary divisors Di, respectively.

By the Poincaré duality we know that the divisors also have an interpretation as complex

curves in the resolution space. For this we assume that all the centers ~xr, r = 1, . . . N -1,

lie ordered on one line. The representation of the exceptional divisors are two-spheres

suspended at two adjacent centers [37]

Er =

{
(
~x, x4

) ∣
∣ x4 ∈ [0, 2πR[ , ~x = ~xr + λ

(
~xr+1 − ~xr

)
, λ ∈ [0, 1]

}

. (3.19)

Clearly these surfaces are compact, and only nearest neighbor divisors have non-vanishing

intersection number one, as they intersect only at a single point: the center that they both

have in common. In a similar way we can also give a representation of the non-compact

ordinary divisors

D1 =

{
(
~x, x4

) ∣
∣ x4 ∈ [0, 2πR[ , ~x = ~xN + λ~e3 , λ ≥ 0

}

,

D2 =

{
(
~x, x4

) ∣
∣ x4 ∈ [0, 2πR[ , ~x = ~x1 − λ~e3 , λ ≥ 0

}

,

(3.20)

Hence, the intersections D1EN−1 = D2E1 = 1 are consistent with what we found before.

The Abelian gauge fluxes are thus associated with the complex curves between two centers

of an Eguchi-Hanson space A schematic picture of these curves and their intersections is

sketched in figure 1.

Non-Abelian bundles on Eguchi-Hanson spaces we can describe by similar pictures.

As we have seen in Subsection 2.3, instantons on Eguchi-Hanson spaces are supported at

one or more centers of the Eguchi-Hanson space. In particular, the standard embedding is

supported on all centers, and therefore all divisors participate to the total Chern class (3.9):

Precisely because the standard embedding instanton is supported at each of the centers we

cannot deform the curves at these points.

Instead, for the instanton I~x2
supported only at ~x2, we can merge the curves D2 and

E1, because there is no obstruction created by the instanton. The resulting curve is denoted

as D2 +E1. Similarly the curves D1 and E2 can be merged to form D1 +E2. This process

is depicted in figure 2 for the C
2/Z3 singularity given in figure 1. Therefore, as far as

the instanton supported only at ~x2 is concerned, there are only two divisors D2 + E1 and

D1 + E2 relevant, and consequently its total Chern class reads

c(I~x2
) = (1 +D2 + E1)(1 +D1 +E2) . (3.21)
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D1
E2

D1 + E2

E1D2

D2 + E1

~x2

~x2

~x2~x1 ~x3

Figure 2: The two curves D2, E1 and D1, E2 are merged to form the curves D2 +E1 and D1 +E2,

respectively.

Because this describes an SU(2) (non-Abelian) flux the first Chern class vanishes identically,

as follows directly from expanding this to first order and using the linear equivalence

relations (3.7). For the second Chern class we find
∫

c2(I~x2
) = 1 − 1

N
, (3.22)

using the intersection numbers given above. This is consistent with the result computed

in (2.41) using the explicit instanton solution on the Eguchi-Hanson space. One can check

that also for instantons supported at multiple centers this procedure gives the correct value

p− 1/N for the second Chern class, and that this result only depends on the number p of

centers present in the instanton, not at their location.

4. Blowup models on non-compact K3 orbifolds

In the previous two sections we used both explicit constructions and implicit toric geometry

methods to describe the geometry of non-compact resolutions of C
2/ZN orbifolds, and the

Abelian and non-Abelian gauge configurations they can support. The purpose of this

section is to show that the resulting models can be understood as non-compact heterotic

orbifold models with certain VEV’s switched on. For concreteness we restrict ourselves to

models on the C
2/Z3 orbifold only. The corresponding heterotic orbifold models are listed

in table 1. Below we list the possible smooth models obtained by combining the Abelian

and non-Abelian bundles constructed in the previous sections. Since by definition all these

configurations are supersymmetric as the gauge backgrounds were required to satisfy the

Hermitian Yang-Mills equations, we restrict ourself to the blow-ups of heterotic C
2/Z3

orbifold models that do not break supersymmetry, thus, we only consider VEV’s along flat

directions of the potential.

We stress the fact that the models we consider are non-compact, but they are built

in a way such that compact (global) orbifolds can be recovered in the simplest possible
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#
Gauge group

Shift vector

Untwisted

matter

Twisted

matter

3a SO(()28)× SU(()2)× U(()1) 1

9
[(28,2)1 + 1(1, 1)2 + 2(1, 1)0] (28,2)

−1/3 + 5(1,1)2/3

1

3
(12

, 014) +2(1, 1)4/3

3b SO(()22)× SU(()5)× U(()1) 1

9
[(22, 5)1 + (1,10)2 + 2(1, 1)0] (22,1)5/3 + (1,10)

−4/3

1

3
(14

, 2, 011) +2(1, 5)
−2/3

3c SO(()16)× SU(()8)× U(()1) 1

9
[(16, 8)1 + (1,28)2 + 2(1, 1)0] (1,28)

−2/3 + 2(1,1)8/3

1

3
(18

, 08)

3d SO(()10)× SU(()11) ×U(()1) 1

9
[(10,11)1 + (1,55)2 + 2(1, 1)0] (1, 11)

−8/3 + (16,1)
−11/6

1

3
(110

, 2, 05)

3e SU(()14) × SU(()2)2 ×U(()1) 1

9
[(14,2, 2)1 + (91,1,1)2 + 2(1)0] (1)14/3 + (14,2,1)

−4/3

1

3
(114

, 02) +2(1,1, 2)
−7/3

Table 1: SO(32) heterotic orbifold spectra on C2/Z3, see e.g. [55, 56, 24].

way. In particular, we enforce on the local models all the conditions required in the global

models, in this way we have that the spectrum of T 4/Z3 models can be obtained by just

trivially summing over its 9 C
2/Z3 singularities, i.e. by multiplying by 9 the C

2/Z3 spectra

given in table 1.

4.1 Abelian and non-abelian bundles on the resolved C
2/Z3 singularity

We consider a smooth resolution of the C
2/Z3 orbifold. The Abelian and non-Abelian

gauge configurations were discussed at length in subsections 2.2, 2.3 and 3.2, 3.3 as explicit

and toric geometrical constructions, respectively. Their collective characterization can

be summarized as follows: The vectors V1 and V2 define the embedding of the two line

bundles present in the resolution, see (3.15). The number n
1/2
p counts the number of SU(2)

bundles embedded in SO(32) supported at p centers on the Eguchi-Hanson resolution space

(p = 1, 2, 3 because we treat the Z3 case). Finally n1
p is defined similar to n

1/2
p , but the

spin-one representation of SU(2) is used instead.

To obtain non-compact resolution models, for which we are readily able to compute

spectra, we enforce the local Bianchi identity

1

3

(
V 2

1 + V 2
2 + V1 · V2

)
+

4

3
n1

1 +
2

3
n

1/2
1 +

5

3
n

1/2
2 +

8

3
n

1/2
3 = K , K =

8

3
. (4.1)

Other possible bundles could be present if we did not require the local Bianchi identity to

be fulfilled, i.e. when K 6= 8/3. (The Bianchi-identity here is given in the normalization ap-

propriate for SU-groups. The spin-1 embedding of the instanton is defined in SO(3), hence

the factor in front of n1
1 is 4/3 rather than 4∗2/3. The relevant integrals are summarized in

table 2.) Since the contributions involving V1 and V2 always give a non-negative contribu-

tion, the instanton numbers of the (non-)Abelian configurations n = (n1
1, n

1/2
1 , n

1/2
2 , n

1/2
3 )

satisfy 4n1
1 +2n

1/2
1 +5n

1/2
2 +8n

1/2
3 ≤ 8. The possible configurations are listed in table 3. If

this sum equals eight, only non-Abelian bundles are involved; if it vanishes only line bundles

are employed; otherwise a mixture of both types is required. The identification of the line
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spin-1
2 SU(2)+ spin-1 SO(3)

rκ
1

8π2

∫
trrκ(F ′)2

1 0

2 p − 1
3

3 4(p − 1
3 )

rκ
1

8π2

∫
trrκ(F ′)2

1 0

3 4(p − 1
3)

Table 2: Depending on the representation under the SU(2) or SO(3) group characterizing the

embedding of the instantons the multiplicities of zero modes in six dimensions change. Finally, p

specifies on how many centers the instanton background is located.

bundle vectors with the Z3 orbifold shift imposes that V1/3 = −V2/3 up to the addition of

lattice vectors [32]. In fact in most cases no lattice vectors are needed, thus, in general we

have V1 = −V2 = (016−m1−m2 , 1m1 , 2m2) with m1 +m2 < 16, or V1 = −V2 = 1
2(1m1 , 3m2)

and m1 +m2 = 16. One additional constraint is that the line bundle vectors are properly

quantized such that the Freed-Witten anomaly [57, 58] does not arise: The first Chern

class of the bundle, i.e. the sum of the entries of the line bundle vectors, needs to be even.

From equation (4.1) it follows immediately, that if n
1/2
2 = 1 (or odd in general) then this

condition is violated. Finding the relevant m1 and m2 is straightforward and the results

are listed in the second column of table 3.

Given the topological characterization of the Abelian and non-Abelian bundles, the

gauge symmetry breaking they induce can be investigated. When the Abelian and non-

Abelian gauge fluxes are embedded in different parts of SO(32), the resulting unbroken

gauge group is the intersection of the groups that are unbroken by either flux. The other

possibility is that the Abelian and the non-Abelian gauge backgrounds share some Cartan

generators; they “overlap”. Because the two types of fluxes commute with each other, if

the SU(2) instanton has a Cartan generator, say H1 + H2, and non-Abelian generators

corresponding to the weights ±(12, 014), then the Abelian flux has to be embedded in the

SO(32) Cartan as H1 − H2. This Cartan “overlapping” of the non-Abelian and Abelian

gauge flux has two consequences: The unbroken SO(N) group will be larger, while the

Sp(2n) or SU(2) group are (partially) broken. The amount of Cartan “overlap” of the

Abelian flux with the instanton gauge configuration is indicated in the overbraced part of

the line bundle vector V1. The resulting unbroken gauge group is listed in the third column

of table 3. We stress that a specific overlap, treated in [59], is the case of a U(()2) bundle

embedded in SO(32).

Once the gauge bundle has been topologically characterized, its embedding as a sub-

group H ∈ SO(32) gauge group has been specified, and the resulting unbroken gauge

group G has been determined, we can compute the full spectrum using index theorems

or equivalently from the anomaly polynomial of the ten dimensional gaugino. For this we
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need to specify the branching of the adjoint representation into a sum of tensor product

representations as

Ad = 496 =
⊕

κ

(rκ,Rκ) , (4.2)

where rκ and Rκ denote irreducible representations of the non-Abelian part of H and G,

respectively. Under the assumption V1 = −V2 = V , we find that the multiplicity Nκ of a

state Rκ is determined by

Nκ =
1

2

1

(2π)2

∫ {
1

2
trrκ(F ′)2 +

1

2
dim rκ

(

F2
V |Rκ − 1

12
trR2

)}

, (4.3)

where F ′ denotes the non-Abelian instanton background, FV the Abelian gauge flux, and R
the SU(2) curvature two-form. The integrals over the curvature and the U(1) background

follow directly from the results of earlier parts of this paper, i.e.

1

8π2

∫

trR2 =
8

3
,

1

8π2

∫

trF2
V =

1

3
H2
V , (4.4)

where we denote by HV = VI HI the Cartan generator of the Abelian-bundle. The value

of the operator H2
V has to be evaluated on each of the irreducible representations Rκ as

the multiplicity number (4.3) indicates. More care needs to be taken when computing

the integral over the non-Abelian instanton background F ′, as it also depends on over

which representation rκ the trace is taken. For the spin-1
2 instantons this can be the

singlet 1, the fundamental 2, or the adjoint 3, representations of SU(2); for the spin-1

instantons only the singlet or triplet representations of SO(3) are relevant for our purposes.

In the cases where there are multiple non-Abelian instantons embedded, also traces over

product representations occur. The basic values of the possible instanton numbers have

been collected in table 2.

The resulting spectra are given in the last column of table 3. The computation of these

spectra requires mostly standard group theory, see e.g. [60]. As only the representation

theory of the Sp(2n) groups might be less known, we have collected some relevant facts in

appendix A. The spectra for the pure line bundle models agree with those given in ref. [24];

the other spectra are novel except that of the standard embedding.

4.2 Supersymmetric blowups

We study blow-ups of the Z3 heterotic orbifold models, that preserve six dimensional

supersymmetry by switching on VEV’s for twisted and possibly also untwisted states, and

that can be identified with the smooth bundle models listed in table 3. The analysis can

be performed entirely at the classical level, because in six dimensional super-Yang-Mills

theory dangerous loop corrections to the potential are absent. (This is of course unlike the

four dimensional case, where one-loop Fayet-Iliopoulos corrections may arise.)

The study of flat directions of the potential V involves the three real auxiliary fields,

Di
a with i = 1, 2, 3, of six dimensional super Yang-Mills theory

V =
1

2

∑

i,a

(Di
a)

2 , Di
a = σiαβ φ

†
α Taφβ , (4.5)
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(n1

1
, n

1

2

3
, n

1

2

2
, n

1

2

1
) V1 = −V2 Non-Abelian gauge group Matter spectrum (up to singlets)

(2, 0, 0, 0) (016) SO(26) 2 (26)

(1, 0, 0, 2) (016) SO(21) × Sp(4) 1

9
(21,4) + (21,1) + (1, 5) + 3 (1,4)

(0, 1, 0, 0) (016) SO(28) × SU(2) 10

9
(28, 2)

(0, 0, 0, 4) (016) SO(16) × Sp(8) 1

9
(16,8) + (1, 27)

(1, 0, 0, 1) (
z }| {

1, -1 , 014) SO(25) 17

9
(25)

(12, 014) SO(21) × SU(2)2 1

9
(21,2,1) + 1

9
(21, 1,2) + (21, 1,1) + 8

9
(1,2,2)

+3 (1, 2,1) + 3 (1,1,2)

(1, 0, 0, 0) (22, 014) SO(27) 19

9
(27)

(14, 012) SO(21) × SU(4) 1

9
(21,4) + 10

9
(1,6) + 3 (1, 4) + (21, 1)

(0, 0, 0, 3) (
z }| {

1, -1 , 014) SO(20) × Sp(4) 1

9
(20,4) + 8

9
(20,1) + 28

9
(1,4) + (1, 5)

(12, 014) SO(16) × Sp(6) × SU(2) 1

9
(16,1,2) + 1

9
(16, 6,1) + 8

9
(1,6,2) + (1, 14,1)

(0, 0, 0, 2) (2, 015) SO(22) × Sp(4) 1

9
(22,4) + 10

9
(22,1) + (1,5) + 26

9
(1,4)

(

z }| {

12, -12 , 012) SO(24) 16

9
(24)

(
z }| {

1, -1 , 12, 012) SO(20) × SU(2)2 1

9
(20,2,1) + 1

9
(20, 1,2) + 8

9
(20, 1,1) + 8

9
(1,2,2)

+ 28

9
(1,1,2) + 28

9
(1,2,1)

(14, 012) SO(16) × Sp(4) × SU(4) 1

9
(16,1,4) + 1

9
(16, 4,1) + 10

9
(1, 1,6) + 8

9
(1,4,4)

+ (1, 5,1)

1

2
(

z }| {

12, -12, 112) SU(12) 20

9
(12) + 1

9
(66)

(0, 0, 0, 1) (2,
z }| {

1, -1 , 013) SO(26) 2 (26)

(2, 12, 013) SO(22) × SU(2)2 1

9
(22,2,1) + 1

9
(22, 1,2) + 10

9
(22,1,1) + 8

9
(1, 2,2)

+ 26

9
(1,2,1) + 26

9
(1,1,2)

(
z }| {

1, -1 , 14, 010) SO(20) × U(4) 1

9
(20,4) + 8

9
(20,1) + 28

9
(1,4) + 10

9
(1,6)

(16, 010) SO(16) × SU(6) × SU(2) 1

9
(16,6,1) + 1

9
(16, 1,2) + 8

9
(1,6,2) + 10

9
(1,15, 1)

1

2
(
z }| {

1, -1, 113, 3) SU(13) 21

9
(13) + 1

9
(78)

(0, 0, 0, 0) (22, 014) SO(28) × SU(2) 10

9
(28, 2)

(2, 14, 011) SO(22) × SU(4) 1

9
(22,4) + 10

9
(22,1) + 10

9
(1, 6) + 26

9
(1, 4)

(18, 08) SO(16) × SU(8) 1

9
(16,8) + 10

9
(1,28)

1

2
(114, 32) SU(14) × SU(2) 1

9
(91,1) + 11

9
(14,2)

Table 3: This table gives the Abelian and non-Abelian bundles fulfilling the local Bianchi iden-

tity (4.1) on the resolved C2/Z3 singularity, and the resulting models. The first column indicates

the instanton numbers of the non-Abelian bundles. The second column gives the Abelian bundle

vectors. The overbrace indicates the amount of “overlap”, i.e. shared Cartan generators, there is

between the Abelian background and the SU(2) instanton(s). The third column lists the possible

unbroken non-Abelian gauge group. The final column gives the resulting spectrum up to singlets.

where the representation indices on the complex scalar components φ1, φ2 of a hyper-

multiplet and gauge generator Ta have been suppressed. It turns out convenient to use

four dimensional N = 1 notation of a real D-term Da = D3
a and a complex F-term

Fa = (D1
a + iD2

a)/
√

2. Since the complex scalar φ1 and φ2 components of hypermulti-
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(n1

1
, n

1

2

3
, n

1

2

2
, n

1

2

1
) V1 = −V2 Unbroken gauge group # Twisted Untwisted

(2, 0, 0, 0) (016) SO(26) 3a (28,2), (1)

(1, 0, 0, 2) (016) SO(21) × Sp(4) 3b (22,1), (1,10) (22,5)

(0, 1, 0, 0) (016) SO(28) × SU(2) 3a 2 × (1)

(0, 0, 0, 4) (016) SO(16) × Sp(8) 3c (1, 28), (1)

(1, 28), (1) (1,28)

(1, 0, 0, 1) (
z }| {

1, -1 , 014) SO(25) 3a (28,2), (1) (28,2)

(12, 014) SO(21) × SU(2) × SU(2) 3b (22,1), (1,10), (1,5) (1,10)

(1, 0, 0, 0) (2, 015) SO(27) 3a (28,2), (1) (28,2)

(14, 012) SO(21) × SU(4) 3b (22,1), (1,5) (22,5)

(0, 0, 0, 3) (
z }| {

1, -1 , 014) SO(20) × Sp(4) 3b (22,1), (1,10) (22,5)

(12, 014) SO(16) × Sp(6) × SU(2) 3c (1, 28), (1) (1,28)

(0, 0, 0, 2) (2, 015) SO(22) × Sp(4) 3b (1, 10), (1,5)

(1, 10), (1,5) (1,10)

(

z }| {

12, -12 , 012) SO(24) 3a (28,2), (1) (28,2)

(
z }| {

1, -1 , 12, 012) SO(20) × SU(2)2 3b (22,1), (1,10) (22,5), (1, 10)

(14, 012) SO(16) × Sp(4) × SU(4) 3c (1, 28), (1) (1,28)

1

2
(

z }| {

12, -12, 112) SU(12) 3e (14,2, 1), (2, 1,1), (1) (14,2,2)

(0, 0, 0, 1) (2,
z }| {

1, -1 , 013) SO(26) 3a (28,2), (1)

(2, 12, 013) SO(22) × SU(2)2 3b (1, 10), (1,5) (1,10)

(
z }| {

1, -1 , 14, 010) SO(20) × U(4) 3b (22,1), (1,5) (22,5)

(16, 010) SO(16) × SU(2) × SU(6) 3c (1, 28), (1) (1,28)

1

2
(
z }| {

1, -1, 113, 3) SU(13) 3e (14,2, 1), (2, 1,1), (1) (14,2,2)

(0, 0, 0, 0) (22, 014) SO(28) × SU(2) 3a 2 × (1)

(2, 14, 011) SO(22) × SU(4) 3b 2 × (1,5)

(18, 08) SO(16) × SU(8) 3c 2 × (1)

1

2
(114, 32) SU(14) × SU(2) 3e 2 × (1,1,2)

Table 4: The first three columns contain the same information as table 3. The final columns

indicate from which of five heterotic Z3 models, listed in table 1, these bundle models can be

obtained by switching on VEV’s for the indicated twisted and untwisted states.

plets are in complex conjugate representations, we have

V =
1

2

∑

a

D2
a +

∑

a

F̄aFa , Da = φ̄1Taφ1 − φ2Taφ̄2 , F̄a = φ2Taφ1 . (4.6)

Therefore, if the scalars in the hypermultiplet are internally aligned, i.e.

φ2 = αφ φ̄1 , |αφ| = 1 ⇒ F̄ = αφ φ̄1Taφ1 , (4.7)

the D-term vanishes immediately, and the F-term takes the form of a D-term but with a

phase αφ as pre-factor. If one has more than one hypermultiplet, the alignment can happen
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in each hyper multiplet separately, which gives a collection of phases, and relative signs in

particular. This simplifies the analysis considerably: One does not have to worry anymore

about D-terms and the phases may be used to make the F-terms vanish as well.

The subsequent analysis of the flat directions is straightforward but somewhat tedious.

We have diverted most of this discussion to appendix C; here we only summarize the results

of the complete analysis in table 4. In this table we list for each of the bundle models given

in table 3 from which heterotic orbifold models, classified in table 1, it can be obtained

by switching on the VEV’s for the hypermultiplets listed in the last column of table 4.

This table shows that each bundle model, for which explicit solutions to the Hermitean

Yang-Mills equations exist, indeed corresponds to an F- and D-flat direction.

One can follow this correspondence of the bundle models and the orbifold models also

at the level of the spectra. We have checked, that the non-Abelian spectra of the orbifold

models, with appropriate VEV’s switched on, results in branching of the matter represen-

tation giving precisely the non-Abelian spectra of the bundle models. This identification

is exact if one takes Higgsing of vector multiplets due to symmetry breaking into account,

that eats away some hypermultiplets. Because of six dimensional chirality, states can only

pair up and become massive, provided that one is a vector multiplet and the other a hyper-

multiplet. This means that the index theorem exactly determines the number of massless

hyper (including non-Abelian singlets) and vector multiplets. In table 3 we refrained from

giving the multiplicities of singlet states; they can either be directly computed via the index

theorem, or using the fact that the pure gravitational anomaly gives a relation between the

number of vector multiplets and hypermultiplets [61, 62].

From table 4 we can determine some relations between the VEV’s of twisted and

untwisted states of the orbifold model and the corresponding bundle model. In particular,

we see that all pure line bundle models are obtained by switching on VEV’s for two identical

twisted hypers. All other bundle models have different hypermultiplets switched on; except

for the standard embedding model with n = (0, 1, 0, 0).

4.3 Modified local Bianchi identity

The comparison between possible VEV configurations of orbifold models and the explicit

bundle models constructed here, indicates that our list of bundles is not complete: There

are supersymmetric VEV assignments that do not seem to have a counter part as a bundle

model. Before we explain what is going on here, we first give two examples of this situation:

First of all, notice that all the constructed bundle models are obtained by switching on

VEV’s in orbifold models 3a, 3b, 3c and 3e of table 1, while model 3d is never used. Nev-

ertheless this model has a fully flat direction with simultaneously suitably aligned VEV’s

of the (10,11)1, (1,55)2 and (1,11)−8/3 breaking the gauge group to SO(9)×Sp(10).

A second example is provided by orbifold model 3c. We see from table 4 that all the

bundle models with an SO(16) group factor result from this orbifold model by switching on

VEV’s of one or two twisted singlets (1)8/3 and the twisted and untwisted anti-symmetric

tensors, (1,28) -2/3 and (1,28)1. Following the analysis of appendix C one concludes that

with these multiplets taking VEV’s the possible unbroken gauge group could be any of

the ones listed in table 5. These different possibilities arise because of the VEV’s for the
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anti-symmetric tensors: They can be skew-diagonalized. Then depending on whether some

or all of its diagonal entries are equal and / or zero, one of the above mentioned gauge

groups is realized. (For example: All entries zero gives SU(8), all entries equal but non-zero

gives Sp(8), and finally all entries different gives SU(2)4.) Table 3 does not contain the

gauge group factors Sp(4)×Sp(4), SU(4)×SU(2)2, Sp(4)×SU(2)2 and SU(2)4, hence there

are bundle models missing.

As a side remark we note, that this example also shows that many different bundle mod-

els, characterized by different topological parameters are actually related to each other by

continuous deformations of the VEV’s of twisted and untwisted states of the corresponding

orbifold model. The precise relation between the moduli space of VEV configurations and

bundle models is beyond the scope of this paper. Presumably this requires to analyze the

full gauge bundle moduli space using the ADHM [44, 45] and Kronheimer-Nakajima [46 –

48] constructions, see e.g. [36, 37, 63, 49].

Bundle realizations of these and other VEV configurations of orbifold models can be

obtained realizing that the local Bianchi identity (4.1) is a sufficient condition to uncover

consistent models but certainly not a necessary condition. Indeed, only on a compact K3

the integrated Bianchi identity needs to vanish. This means that if one has a compact

orbifold, say like T 4/Z3, the sum of the instanton numbers from all fixed points needs to

equal 24. The local Bianchi identity (4.1) is obtained by splitting up the total instanton

number of K3 equally over all 9 fixed points of T 4/Z3. The total instanton number 24 can-

not be completely arbitrarily distributed over the various fixed points, since the instanton

number is quantized itself [64, 65, 55]: The basic unit of instanton number that can be

moved around equals 1. This means that the local Bianchi identity (4.1) equals K = 8/3

mod 1. The additional constraint, that the first Chern class of the bundle is even, implies

that K = 8/3 mod 2, unless n
1/2
2 is odd. This coincides precisely with the (weak) modular

invariance condition for a local orbifold shift vector.

The smallest local Bianchi identity has K = 2/3 in (4.1). There are two solutions

to this equation: i) n
1/2
1 = 1, V1 = V2 = 0, which results in the unbroken gauge group

SO(28) × SU(2), and ii) n
1/2
1 = 0, V1 = −V2 = (12, 014), with unbroken gauge group

SO(28) × SU(2). Thus both are VEV configurations of orbifold model 3a, which we had

already found.

Using the modified Bianchi identity, eq. (4.1) for an instanton number K = 14/3 a

bundle realization of the VEV configuration of model 3d can be found: The bundle is

characterized by n1
1 = 1 and n

1/2
1 = 5. Also the VEV configurations of 3c with gauge

groups Sp(4)×Sp(4), SU(4)×SU(2)2, Sp(4)×SU(2)2 and SU(2)4, discussed above, can be

identified. For each of these models we give a bundle candidate in table 5. To compute

the spectra of these models is challenging because for that we need a modified index

theorem that takes the non-vanishing three-form flux H3 into account. Indeed, using

the standard index theorem ensures an anomaly-free spectrum only in case the Bianchi

identity is fulfilled [66, 61].
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gauge group bundle realization K

SO(16)×SU(8) V1 = (18, 08) 8
3

SO(16)×Sp(8) n
1/2
1 = 4 8

3

SO(16)×Sp(6)×SU(2) n
1/2
1 = 3, V1 = (12, 014) 8

3

SO(16)×SU(4)×Sp(4) n
1/2
1 = 2, V1 = (14, 012) 8

3

SO(16)×SU(6)×SU(2) n
1/2
1 = 1, V1 = (16, 08) 8

3

SO(16)×Sp(4)×Sp(4) n
1/2
2 = n

1/2
1 = 2 14

3

SO(16)×SU(4)×SU(2)2 n
1/2
1 = 1, V1 = (22, 14, 010) 14

3

SO(16)×Sp(4)×SU(2)2 n
1/2
1 = 2, V1 = (22, 12, 012) 14

3

SO(16)×SU(2)4 n
1/2
3 = n

1/2
1 = 1, V1 = (22, 12, 012) 20

3

Table 5: We give possible bundle realizations of all VEV configurations of model 3c. The last

column indicates for which models a modification of the local Bianchi identity is required, i.e.

K 6= 8/3. (Only the non-vanishing gauge instanton numbers are given, and V1 = −V2 is assumed.)

5. Conclusions and outlook

The construction of stable non-Abelian bundles on Calabi-Yau manifolds is one of the out-

standing problems in both mathematics and theoretical physics. Yet to determine the full

phenomenological potential of heterotic string constructions this is of fundamental impor-

tance. In this paper we exploited the fact that well-known instantons on Eguchi-Hanson

spaces provide explicit examples of stable bundles on non-compact four dimensional C
2/Zn

orbifold blowups with non-Abelian structure groups. Because in addition also line bundles

have been constructed on Eguchi-Hanson spaces explicitly, we have access to a substantial

class of bundles that can be used for six dimensional model building. Using this we gave a

complete classification of all possible combinations of these instantons with Abelian gauge

fluxes, that fulfill the local Bianchi identity constraint on the C
2/Z3 resolution. Spectra

were computed using index theorems; to obtain anomaly-free spectra it was crucial that

the Bianchi identity was fulfilled locally. The resulting effective six dimensional models

have been listed in table 3.

All of these gauge backgrounds can be related to a configurations of VEV’s of states

present in the corresponding heterotic orbifold models. For models with only Abelian gauge

fluxes always two identical twisted hypermultiplets take VEV’s, confirming our previous

findings [24, 25, 32], that line bundle models correspond to orbifold models with a single

twisted VEV switched on. For non-Abelian gauge fluxes or gauge backgrounds that com-

bine both line bundles and bundles with non-Abelian structure groups, we always need

combinations of simultaneous VEV’s of twisted and often even untwisted states to identify

matching orbifold constructions. In all cases we confirmed that both the gauge groups and
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spectra are identical in the orbifold and bundle perspectives. The multiplicities of states in

the smooth construction, computed using the index theorem on local resolutions, seems to

take rather arbitrary values, given in the final column of table 3. All these values can be

understood from the orbifold perspective as the combination of twisted states with integral

multiplicities, untwisted states with multiplicity 1/9 (because they are bulk modes shared

between nine orbifold fixed points), and the effect of Higgsings that take away multiples of

1/9. Therefore, this provides stringent consistency checks on our results.

We have shown that each combination of instantons and Abelian gauge fluxes that

fulfill the local Bianchi identity corresponds to a VEV configuration of a certain heterotic

orbifold. One may wonder whether one can reverse the statement: Each supersymmetric

system of VEV’s correspond to a configuration of instantons and gauge fluxes. Presumably

this statement is true, but certainly not all these configurations satisfy the local Bianchi

identities. Indeed, we observed that model 3d of table 1 is not used at all as an orbifold

realization of a bundle model that satisfies this condition, see table 4, even though it

definitely possesses flat directions. If we give up the local Bianchi identity and allow that

it differs by some instanton units, a configuration can be identified that leads to the same

gauge group as one obtains from the VEV configuration. To confirm the matching on the

level of the spectra is hampered by the fact, that index theorems on non-compact spaces

cannot be employed when the local Bianchi is not satisfied. A generalization of the index

theorem in the presence of the corresponding three form H-flux is needed.

The situation is similar for the possible VEV configurations of the other orbifold mod-

els. For concreteness we focused on model 3c: Only some of its VEV configurations are

realized as bundle models satisfying the local Bianchi identity. Other VEV assignments

can only be realized, when it is only fulfilled up to a number of instanton units. The result-

ing Bianchi identity is then very similar to the modular invariance condition of heterotic

orbifolds. All these different bundle models correspond to VEV configurations which are

all continuously connected to each other. Different bundle models often only correspond to

very similar VEV configurations, except that in one case the VEVs are equal, in the other

they are different. One does not need to take large numbers of VEVs to zero to interpolate

between such configurations, therefore these transitions are deformations of the bundle

rather than flops. In light of this one may wonder what the topological classification of

the bundles exactly means. The description of bundles on Eguchi-Hanson spaces employed

by us is not the most general: The Kronheimer-Nakajima construction [47] describes the

full moduli space on such ALE gravitational instantons, and might therefore be a more

appropriate setting for this comparison.

Most of the findings reported in this work relied on the crucial fact that on Eguchi-

Hanson spaces, Abelian gauge backgrounds and non-Abelian instanton configurations are

known. Explicit resolutions of C
3/Zn for n > 3 orbifolds are not known, hence to have

access to bundles with non-Abelian structure groups on C
3/Zn resolutions is much more

challenging. (Of course one always has the standard embedding, but precisely since it

immediately fulfills the local Bianchi identity, it only corresponds to one configuration.)

Yet this is of great importance because there are certain six dimensional orbifolds, like

the T 6/Z6-II for which a large pool of MSSM-like models have been constructed recently.
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Resolutions of generic C
3/Zn orbifolds and their line bundles are only known in toric

geometry. In the hope to find a framework that allows us to describe stable bundles

with non-Abelian structure groups on toric resolutions of such orbifold singularities, we

reformulated the description of the Eguchi-Hanson instantons in terms of a toric geometry-

like language.
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A. Some Sp(2n) representation theory

This appendix is devoted to some elementary properties of representation of Sp(2n) groups

and how they arise in branching from SO(4n) groups. Sp(2n) groups are less common

in physics, for that reason we review the properties that we need here. (See for a more

extensive discussion ref. [67].) The group Sp(2n) is defined as the group of real matrices

that leave a symplectic form (anti-symmetric 2n× 2n matrix) Ω invariant

ST ΩS = Ω , Ω = 11n ⊗ ǫ =

(

0 11n
−11n 0

)

. (A.1)

The form of the symplectic matrix Ω given here can be obtained by a suitable basis choice.

Alternatively one can define this group as the set of unitary matrices U ∈ SU(2n) that

leave this symplectic form invariant U †ΩU = Ω. This group is then also often referred to

as USp(2n), both definitions in fact define the same abstract group.

We list the basic representations of Sp(2n). Since Sp(2n) is defined as a matrix group,

its fundamental representation is the 2n component vector representation 2n on which

these matrices act naturally. The adjoint representation is defined as the algebra of the

group. Writing an algebra element A as a block matrix, we find that its matrix blocks

satisfy

A =

(

α β

γ δ

)

, βT = β , γT = γ , δ = − αT . (A.2)

Therefore the adjoint consists of n(2n + 1) components in total. This corresponds to

symmetric Hermitian 2n × 2n matrices, that are the generators of Sp(2n) as a subgroup
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n 1 2 3 4 5

Sp(2n) Sp(2) Sp(4) Sp(6) Sp(8) Sp(10)

Fund = 2n 2 4 6 8 10

Ad = n(2n + 1) 3 10 21 36 55

[2n]2 = n(2n -1) -1 - 5 14 27 48

Table 6: The elementary representations of the smallest Sp(2n) groups are listed. The rep-

resentations for the smallest two makes sense in view of the isomorphisms Sp(2) = SU(2) and

Sp(4) = SO(5).

of the unitary group. We can also consider the anti-symmetric Hermitian matrices. This

does not give directly an irreducible representation because the symplectic form Ω itself is

anti-symmetric. Using it we can define the traceless anti-symmetric representation [2n]2
with n(2n − 1) − 1 components. These representations for Sp(2n) groups up to n = 5 are

collected in table 6.

To compute the spectra of models when Sp-groups appear in the main part of the text

the branching of SO(4n) and SU(2n) to Sp(2n) are crucial. The relevant branching rules

read

SO(4n) → Sp(2n) × SU(2) ,

4n → (2n,2) ,

2n(4n − 1) → (n(2n + 1),1) + (1,3) + (n(2n -1) -1,3) ,

(A.3)

and

SU(2n) → Sp(2n) ,

2n → 2n ,

n(2n -1) → (n(2n -1) -1) + (1) ,

4n2 -1 → (n(2n + 1)) + (n(2n -1) -1) .

(A.4)

B. Clifford algebras for SO(4N)

In the main text we rely at certain points heavily on some properties of Clifford algebras and

spinor representations of SO(N) groups. A convenient way of introducing their properties

is to make use of an explicit basis. For the purposes of this paper we make the following

choices. The standard Pauli matrices

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 -i

i 0

)

, σ3 =

(

1 0

0 -1

)

, (B.1)
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are defined such that σ1σ2 = iσ3.

The four dimensional Euclidean gamma matrices can be chosen as

γi =

(

0 iσi

-iσi 0

)

, γ4 =

(

0 112

112 0

)

. (B.2)

The spin generators 1
2γAB = 1

4 [γA, γB ] of SO(4) are then given by

1

2
γij =

i

2
ǫijk

(

σk 0

0 σk

)

,
1

2
γk4 =

i

2

(

σk 0

0 -σk

)

. (B.3)

The product of all four gamma matrices defines the chirality operator γ = γ1γ2γ3γ4. Using

it one defines the chiral projections of the spin generators

γ±AB = γAB P
± , P± =

1 ± γ

2
. (B.4)

Notice that γγAB = −1
2ǫABCD γCD, hence positive chirality corresponds to self-duality,

see (2.7) in our conventions.

The eight dimensional Euclidean Clifford algebra and spin group are obtained straight-

forwardly from the four dimensional one. We define

ΓA = γA ⊗ 11 , Γ4+A = γ ⊗ γA , (B.5)

as the basis of the generators of the Clifford algebra. The spin generators can be decom-

posed w.r.t. SO(4) × SO(4) as

ΓAB = γAB ⊗ 11 , Γ4+A 4+B = 11 ⊗ γAB , ΓA 4+B = γAγ ⊗ γB . (B.6)

We denote the positive chirality spin generators for both SO(4) factors as Γ+
AB = γ+

AB ⊗ 11

and Γ+
4+A 4+B = 11 ⊗ γ+

AB, respectively. The generators of spin SO(8) that commute with

the sum Γ+
AB + Γ+

4+A 4+B read

Γ−
AB = γ−AB ⊗ 11 , Γ−

4+A 4+B = 11 ⊗ γ−AB , ΓA 4+A = γAγ ⊗ γA . (B.7)

Together these elements generate Sp(4).

C. Flatness analysis of C2/Z3 orbifold models

Even though it is not the most general case, we assume internal alignment of the VEV’s

in hypermultiplets throughout the following analysis. Since our purpose is to find for each

of the bundle models a realization as an heterotic orbifold theory with certain fields taking

non-vanishing VEV’s, this is sufficient for our purposes. This analysis has been divided

into U(1), SU(N), SO(M) and product group flatness investigations below, as these are

the gauge groups that appear in the model listed in table 1.
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C.1 U(1) flatness

To achieve U(1) flatness we need at least two hypermultiplets. If the hypermultiplets

are charged under non-Abelian gauge multiplets one often needs more hypermultiplets to

achieve the flatness for the other gauge symmetries as well. In particular, when one of

the hyper multiplets, is a singlet w.r.t. to any non-Abelian gauge symmetry, the internal

alignment phase and VEV can be adjusted to cancel the U(1) F-term. This means that

if there are singlet hypermultiplets in the spectrum, U(1) flatness can always be achieved.

Hence, from table 1 we infer that in models 3a, 3c and 3e U(1) flatness can always be

obtained, because they contain charged singlets. In all cases we enforce U(1) flatness only

at the end because, it just gives a single extra condition which in most cases can be fulfilled

easily by using singlets or by choosing relations between VEV’s appropriately.

C.2 SU(N) flatness

The F- and D-terms of an SU(N) gauge group can be represented as traceless N×N matri-

ces. It is often more convenient to not enforce the tracelessness from the very beginning,

but rather consider the U(N) F- and D-terms represented by generic N × N matrices.

Requiring that they are proportional to the identity, then enforces SU(N) flatness. In

particular, after internal alignment has been used, SU(N) flatness requires that

F̄ = f̄ 11N , (C.1)

where f̄ is some complex number. For a single hypermultiplet φ = (φ1, φ2) in the funda-

mental representation, in which the φ1 is a SU(N) fundamental and the generators take the

form (Tmn)jk = δmj δ
n
k , the relation cannot be satisfied. Indeed, employing matrix notation

we have

F̄ = αφ φ1φ̄1 . (C.2)

This has determinant zero, and trace equal to φ̄1φ1, but then the above requirement implies

that φ1 vanishes identical. Notice that an additional charged singlet cannot help to fulfill

the flatness condition.

Two fundamentals. From these considerations we conclude that at least two hypermul-

tiplets φ and ψ in the fundamental representation are needed for SU(N) flatness. Assuming

internal alignment the F-term becomes

F̄ = αφ φ1φ̄1 + αψ ψ1ψ̄1 . (C.3)

In such a case cancellation can be ensured, by choosing αφ = −αψ = 1 and ψ1 = φ1.

Hence, we conclude that the fundamentals are aligned, and SU(N) is broken to SU(N -1).

Notice that all the line bundle models are realized by either having two SU(N) vector or

U(1) charged singlet representations a non-vanishing VEV, see the bottom part of table 4.
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One antisymmetric tensor. For a hypermultiplet A = (A1, A2) in the antisymmetric

representation of SU(N), i.e. Amn = −Anm, the flatness condition can be written as

F̄ = αAA1A
†
1 . (C.4)

Using a SU(N -1) transformations we can bring the matrix A1 to a standard form with only

entries around the diagonal

A1 =






a1 ǫ

a2 ǫ
. . .




 , ǫ =

(

0 1

-1 0

)

. (C.5)

The F-term matrix F̄ is then a diagonal matrix. Given this, when N is odd, the last

row and column of A1 are all zero, hence the F-flatness implies that A1 is zero entirely.

When N = 2n even, the absolute values |ai| of the eigenvalues of A1 are all equal; the

corresponding gauge symmetry breaking is SU(2n)→Sp(2n). As can be see in table 4 this

possibility has been used to obtain the bundle model with instanton number (0, 0, 0, 4)

from the heterotic orbifold 3c, given in table 1.

One antisymmetric tensor and one fundamental. Next consider the situation with

one antisymmetric tensor A = (A1, A2) and a fundamental φ = (φ1, φ2) of SU(N). For N

is even we find a previous case back in which only the antisymmetric tensor has a VEV.

For N = 2n+ 1 a new possibility arises because the fundamental φ1 can precisely be non-

vanishing in the direction where the anti-symmetric matrix in the skew-diagonal form is

totally vanishing:

φ1 =






c

0
...




 , A1 =






0

a1 ǫ
. . .




 . (C.6)

The F-flatness then requires that the phases αφ = αA and all entries have equal absolute

values: |c| = |ai|. The corresponding symmetry breaking is SU(2n + 1) → Sp(2n). The

bundle model with instanton number (0, 0, 0, 2) and line bundle vector (2, 015), see table 4,

can be realized in this way from the heterotic orbifold model 3b of table 1.

Two antisymmetric tensors (and a fundamental). When two antisymmetric tensors

A = (A1, A2) and B = (B1, B2) take non-vanishing VEVs the F-term reads

F̄ = αAA1A
†
1 + αB B1B

†
1 . (C.7)

Using an SU(N -1) transformation we can only bring one into the form where all entries

except those immediately off the diagonal vanish. Only when both A1 and B1 are skew-

diagonal, the off-diagonal entries of F̄ all vanish. We see that for N is even there are two

classes of solutions:

αA = αB = 1 : |ai|2 + |bi|2 = r2 ,

αA = -αB = 1 : |ai|2 − |bi|2 = r2 .
(C.8)
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When N is odd only the second solution is available for r = 0.

Depending on whether some of the eigenvalues are equal and non-zero, zero or different,

the gauge symmetry breaking varies. These different possibilities are continously connected

in the moduli space because they are obtained from varying some of these eigenvalues. For

the SU(8) gauge group of heterotic model 3c, see table 1, the possible unbroken gauge

groups range among Sp(8),Sp(6) × SU(2),Sp(4) × SU(4) and SU(2) × SU(6) are realized

as bundle models, see table 4. Again the model with the largest unbroken gauge group,

Sp(8), i.e. the model with instanton numbers (0, 0, 0, 4), has another realization using only

twisted states. In this case there are many other unbroken gauge groups possible that do

not occur in table 4 as we discuss in the main text.

The twisted and untwisted anti-symmetric tensors in heterotic models 3b and 3c have

different U(1) charges, see table 1. This means that alone they cannot achieve both SU(N)

and U(1)-flat configurations; an extra charged field is needed. In model 3c there exists

a twisted charged singlet. For model 3b we can use one of the two (1,5) to find the

unbroken gauge groups Sp(4) and SU(2)2. The moduli space of both SU(5) and U(1)-flat

configurations thus combines the results of this and the previous paragraph:

|b1|2 = |c|2 − |a1|2 , |b2|2 = |c|2 − |a2|2 , |c|2 =
5

2

(
|a1|2 + |a2|2

)
. (C.9)

Therefore generically the surviving gauge group is SU(2)2, however when |a1| = |a2| the

symmetry is enhanced to Sp(4). This corresponds to the bundle model with instanton num-

bers (0, 0, 0, 2) and line bundle vector (2, 015), see table 4. The generic situation describes

the model with instanton number (0, 0, 0, 1) and line bundle vector (2, 12, 013).

C.3 SU(N)×SU(2)×SU(2)′-flatness

The heterotic model 3e of table 1 has gauge group SU(14)×SU(2)×SU(2)′. Apart from the

two SU(2) doublets, the twisted spectrum contains a (14,2,1). Using similar arguments

as presented for a single fundamental of SU(N) one concludes that a VEV for this state

alone is impossible. Therefore, combined SU(14)×SU(2)×SU(2)′-flat configurations are

only possible, if we give the untwisted (14,2,2), and the twisted (14,2,1) and (1,1,2)

VEV’s simultaneously. Denoting the SU(14), SU(2) and SU(2)′ indices as a = 1, . . . N ,

i = 1, 2 and α = 1, 2, respectively, these hypermultiplets are φaiα, ψai and χα. The

F-terms read:

F̄N = αφaiαφ̄biα + β ψaiψ̄bi ,

F̄2 = αφaiαφ̄ajα + β ψaiψ̄aj ,

F̄ ′
2 = αφaiαφ̄aiβ + γ χαχ̄β , (C.10)

with α, β and γ the alignment phases. Let va be an arbitrary non-vanishing SU(N) fun-

damental, and let ei = δi1 and ẽi = δi2 be the standard basis vectors in two dimensions.

When we take α = γ = −β, we can find two flat solutions. The first one has

φaiα = va ei eα , ψai = va ei , χα = c ẽα , (C.11)
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with |c|2 = |v|2 and surviving gauge group SU(N -1). This is the blowup realization of the

bundle model with instanton numbers (0, 0, 0, 2) and line bundle vector 1
2 (
︷ ︸︸ ︷

12, -12 , 112) of

table 4. The other solution involves a second SU(N) fundamental wa which is independent

of the first, say w · v = 0, so that the configuration

φaiα =
(
va ei + wa ẽi

)
eα , ψai = va ei + wa ẽi , χα = c ẽα , (C.12)

with |c|2 = |v|2 + |w|2 can be constructed, the unbroken gauge group is then SU(N -2). This

leads to the second bundle model with a spinorial line bundle vector (i.e. with instanton

number (0, 0, 0, 1) and line bundle vector 1
2(
︷︸︸︷

1, -1 , 112, 32)).

C.4 SO(M)×SU(N)-flatness

In the analysis so far we only considered VEV’s for representations of SU(N) groups. As

table 1 models also includes SO(M), we have to analyze SO(M)-flatness issues as well. The

group SO(M) has antisymmetric generators Tmn = −T nm, with m,n = 1, . . .M . We see

from this table that we only need the vector and spinor representations of SO(M) groups.

In the vector representation of SO(M) the generators take the form: (Tmn)ij = δmi δ
n
j −

δmj δ
n
i , so that for a contraction with two vectors φ and ψ we have

(φ ∧ ψ)mn = φiTmnij ψj = φmψn − φnψm . (C.13)

Hence, we can efficiently use the index-free formalism of 2-forms with the wedge product

∧. As a warm up, we first consider flatness for a single hypermultiplet in the vector

representation, containing the two complex vectors φi1 and φi2. We have the following F̄

and D-term two-forms

F̄ = φ1 ∧ φ2 , D = φ1 ∧ φ̄1 − φ̄2 ∧ φ2 . (C.14)

As usual we assume internal alignment so that the D-term vanish automatically and the

F-term becomes

F̄ = αφ φ1 ∧ φ̄1 = αφRe ∧ Im = 0 , (C.15)

where we split φ1 into its the real and imaginary parts φ1 = Re+ iIm. Hence, F-flatness

is satisfied when Re = ±Im, Re = 0 or Im = 0, but in any case the gauge group is broken

to SO(M -1).

According to table 1 model 3b has a SO(22) vector, so SO-flatness can be achieved in

the way just described. But this twisted state also carries U(1) charge and hence at least

another charged field needs to take a non-vanishing VEV. Since all the other states are

also charged under SU(5) we find complicated VEV configurations.

Bi-fundamental and vectors of both groups. The first configuration of this type

corresponds to the bundle model with instanton number (0, 0, 0, 1) and line bundle vector

(
︷︸︸︷

1, -1 , 14, 010) given in 4: Its non-vanishing fields are bi-fundamental φ = (φ1, φ2), the
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SO-vector ψ = (ψ1, ψ2) and the SU-fundamental χ = (χ1, χ2), and their internal alignment

phases are α, β and γ, respectively. Their VEVs are assigned as

(φ1)ai = va ei , (ψ1)a = wa , (χ1)i = c ei , (C.16)

where v and w are two real vectors that are perpendicular to ensure SO-flatness, and c

a complex constant. The phases are chosen as α = −β = −γ = 1, then |c| = v2 for

SU-flatness, and w2 is adjusted to also have U(1) flatness. If we instead take w = v, still

all flatness conditions can be fulfilled but we end up with the bundle model with instanton

number (1, 0, 0, 0) and the non-overlapping line bundle vector (14, 012).

Bi-fundamental, SO-vector and SU-antisymmetric tensor. Another configuration

employs the VEV’s of the bi-fundamental, one SU-antisymmetric tensor and an SO-vector.

When their VEV assignments are given by

(φ1)a = va , (ψ1)ai = va ei , A1 =






a ǫ

a ǫ

0




 , (C.17)

flatness is achieved provided that |c| = |v|. The resulting unbroken gauge group reads

SO(21)×Sp(4), hence this gives the blowup realization of the bundle model with instanton

number (1, 0, 0, 2) that has no additional line bundle embedding.

Bi-fundamental, SO-vector and two SU-antisymmetric tensors. A third type of

configurations combines VEV’s of the bi-fundamental, two SU-antisymmetric tensors, and

the SO-vector. Their VEV’s are

(φ1)ai = va ei , (ψ1)a = wa , A1 =






a ǫ

0

0




 , B1 =






0

b ǫ

0




 ,

(C.18)

and lead to the symmetry breaking from SO(22)×SU(5) to SO(20)×SU(2)2 provided that

v and w are perpendicular. This corresponds to the bundle model with instanton number

(0, 0, 0, 2) and line bundle vector (
︷︸︸︷

1, -1 , 12, 012) in table 4. When the two vectors v and w

are equal, the gauge symmetry is only broken to SO(21)×SU(2)2, i.e. we recover the bundle

model with instanton number (1, 0, 0, 1) and non-overlapping line bundle vector (12, 014).

Two bi-fundamentals. In the final configuration we consider, there are two bi-

fundamentals. We can view the components of the bi-fundamentals as SO-vectors a, b, c

and d

σ1 =
(

a b
)

, ψ1 =
(

c d
)

. (C.19)

The SO-flatness is fulfilled when these vectors are all real. SU-flatness gives the conditions

āb ± c̄d = 0 , |a|2 ± |c|2 = |b|2 ± |d|2 , (C.20)
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where the ±-sign distinguishes between two possible alignments. By taking the vectors

perpendicular when they are not proportional, one solves the first equation trivially. With

this class of VEV configurations various bundle models are obtained: When all four vectors

are perpendicular we end up with gauge group SO(24), i.e. the bundle model with instanton

number (0, 0, 0, 2) and fully overlapping line bundle vector (
︷ ︸︸ ︷

12, -12 , 012). With three non-

vanishing vectors with |b|2 = |a|2 + |c|2 and d = 0 we have the gauge group SO(25): the

bundle model with n = (1, 0, 0, 1) and V = (
︷ ︸︸ ︷

1,−1 , 014). Finally when we align all four

vectors, the gauge group is SO(27); the bundle model n = (1, 0, 0, 0) and V = (2, 015) is

found.
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